Answer:
P(X = 3) = 0.14680064
Step-by-step explanation:
Formula=============================
[tex]p\left( X=k\right) =C^{k}_{n}p^{k}(1-p)^{n-k}\ \ ;\ k\in \left\{ 0,\ldots ,n\right\}[/tex]
……………………………………………………………………..
Given :
n = 8
p = 0.2
1 - p = 1 - 0.2 = 0.8
k = 3
Then
[tex]p\left( X=3\right) =C^{3}_{8}(0.2)^{3}(0.8)^{5}[/tex]
[tex]=0.14680064[/tex]