Respuesta :

Part A

To show the total capacity of container B is 132 cm³

volume = unit rate × time taken

volume = 6 cm³ × 22

volume = 132 cm³ ∴ Hence proved.

Find radius

[tex]\sf volume \ of \ cone = \dfrac{1}{3} \pi r^2 h[/tex]

===================

[tex]\rightarrow \sf \dfrac{1}{3} * \dfrac{22}{7} * r^2 * 14 = 132[/tex]

simplify

[tex]\rightarrow \sf \dfrac{44}{3} * r^2= 132[/tex]

change sides

[tex]\rightarrow \sf r^2= \dfrac{132(3)}{44} = 9[/tex]

square root both sides

[tex]\rightarrow \sf r = 3[/tex]

∴ Hence the radius of cone (Shape B is 3 cm)

To show the time taken

volume = unit rate × time taken

[tex]\sf volume \ of \ hemi -sphere = \dfrac{2}{3} \pi r^3[/tex]

=========================

[tex]\sf \rightarrow \dfrac{2}{3} \pi r^3 = 6 * time \ taken[/tex]

Insert values

[tex]\sf \rightarrow \dfrac{2}{3} *\dfrac{22}{7} \ r^3 = 6 * time \ taken[/tex]

exchange sides

[tex]\sf \rightarrow time \ taken = \dfrac{2}{3} *\dfrac{22}{7} \ r^3 *\dfrac{1}{6}[/tex]

simplify following

[tex]\sf \rightarrow time \ taken = \dfrac{22}{63}r^3[/tex]