Respuesta :
[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]
We have to find the probability of not getting odd, whole rolling a 6 sided die ~
Actually dices have 3 odd numbers (1 , 3 , 5) and 3 non - odd numbers (2 , 4 ,6)
When we roll a dice, we may get any of the six numbers, so total possible outcomes are 6
and, The number of Favorable outcomes is 3, i.e non - odd numbers.
[tex] \qquad \sf \dashrightarrow \: p(not \: odd) = \dfrac{favourable \: outcomes}{total \: \: outcomes} [/tex]
[tex] \qquad \sf \dashrightarrow \: p(not \: odd) = \dfrac{3}{6} [/tex]
[tex] \qquad \sf \dashrightarrow \: p(not \: odd) = \dfrac{1}{2} \: \: \: or \: \: \: 0.5[/tex]
Answer:
½
Step-by-step explanation:
Not odd (even) numbers from 1 - 6 = 2, 4, 6
Any of these 3 numbers can come when rolling a cubical 6 - sided dice.
Then,
P (not odd)
= Favourable outcomes / total number of outcomes
= 3/6
= ½
_____
Hope it helps ⚜