Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

We have to find the probability of not getting odd, whole rolling a 6 sided die ~

Actually dices have 3 odd numbers (1 , 3 , 5) and 3 non - odd numbers (2 , 4 ,6)

When we roll a dice, we may get any of the six numbers, so total possible outcomes are 6

and, The number of Favorable outcomes is 3, i.e non - odd numbers.

[tex] \qquad \sf  \dashrightarrow \: p(not \: odd) = \dfrac{favourable \: outcomes}{total \: \: outcomes} [/tex]

[tex] \qquad \sf  \dashrightarrow \: p(not \: odd) = \dfrac{3}{6} [/tex]

[tex] \qquad \sf  \dashrightarrow \: p(not \: odd) = \dfrac{1}{2} \: \: \: or \: \: \: 0.5[/tex]

Answer:

½

Step-by-step explanation:

Not odd (even) numbers from 1 - 6 = 2, 4, 6

Any of these 3 numbers can come when rolling a cubical 6 - sided dice.

Then,

P (not odd)

= Favourable outcomes / total number of outcomes

= 3/6

= ½

_____

Hope it helps ⚜