Answer:
option 2
Step-by-step explanation:
consider the coordinates A (- 3, 4 ) and A' (- 1, [tex]\frac{4}{3}[/tex] )
since the dilatation is centred at the origin, then corresponding coordinates are multiples/ divisors of each other, then image to original gives scale factor.
scale factor = [tex]\frac{A'}{A}[/tex] = [tex]\frac{-1}{-3}[/tex] = [tex]\frac{1}{3}[/tex] and [tex]\frac{\frac{4}{3} }{4}[/tex] = [tex]\frac{1}{3}[/tex]
similarly B (1, - 2 ) and B' ([tex]\frac{1}{3}[/tex], - [tex]\frac{2}{3}[/tex] )
[tex]\frac{\frac{1}{3} }{1}[/tex] = [tex]\frac{1}{3}[/tex] and [tex]\frac{-\frac{2}{3} }{-2}[/tex] = [tex]\frac{1}{3}[/tex]