Respuesta :
Consider,
[tex]{:\implies \quad \displaystyle \sf \langle p\rangle =m\langle v(t)\rangle=m\int_{-\infty}^{\infty}x\bigg\{\dfrac{\partial \Psi^{*}(x,t)}{\partial t}\Psi (x,t)+\Psi^{*}(x,t)\dfrac{\partial \Psi (x,t)}{\partial t}\bigg\}dx}[/tex]
Multiply both sides by ih and simplification will yield
[tex]{:\implies \quad \displaystyle \sf ih\langle p\rangle =m\int_{-\infty}^{\infty}x\bigg[\Psi (x,t)\bigg\{\dfrac{h^2}{2m}\dfrac{\partial^{2}\Psi^{*}(x,t)}{\partial x^2}-V(x)\Psi^{*}(x,t)\bigg\}+\Psi^{*}(x,t)\bigg\{V(x)\Psi (x,t)-\dfrac{h^2}{2m}\dfrac{\partial^{2}\Psi (x,t)}{\partial x^2}\bigg\}\bigg]dx}[/tex]
Some simplification, Then Integrate by parts and then knowing the fact that the wave function vanishes for [tex]{\bf x\to \pm \infty}[/tex] will yield:
[tex]{:\implies \quad \displaystyle \sf \langle p\rangle =\dfrac{ih}{2}\int_{-\infty}^{\infty}\bigg\{\dfrac{\partial \Psi^{*}(x,t)}{\partial x}\Psi (x,t)-\Psi^{*}(x,t)\dfrac{\partial \Psi (x,t)}{\partial x}\bigg\}dx}[/tex]
Integrating by parts and knowing the same fact by some simplification will yield:
[tex]{:\implies \quad \displaystyle \sf \langle p\rangle =-ih\int_{-\infty}^{\infty}\Psi^{*}(x,t)\dfrac{\partial \Psi (x,t)}{\partial x}dx}[/tex]
The momentum is thus contained within the wave function, so we can then deduce that:
[tex]{:\implies \quad \sf p\rightarrow -ih\dfrac{\partial}{\partial x}}[/tex]
[tex]{:\implies \quad \sf p^{n}\rightarrow \bigg(-ih\dfrac{\partial}{\partial x}\bigg)^{n}}[/tex]
[tex]{:\implies \therefore \quad \displaystyle \sf \langle p^{2}\rangle =-h^{2}\int_{-\infty}^{\infty}\Psi^{*}(x,t)\dfrac{\partial^{2}\Psi (x,t)}{\partial x^2}dx}[/tex]
Now the kinetic energy
[tex]{:\implies \quad \displaystyle \sf \langle K\rangle =\dfrac{\langle p^{2}\rangle}{2m}=\dfrac{-h^2}{2m}\int_{-\infty}^{\infty}\Psi^{*}(x,t)\dfrac{\partial^{2}\Psi (x,t)}{\partial x^2}dx}[/tex]
The classical formula for the total energy
[tex]{:\implies \quad \sf \dfrac{p^2}{2m}+V(x)=E}[/tex]
Multiplying this equation by [tex]{\sf \Psi (x,t)=\psi (x)exp\bigg(\dfrac{-iEt}{h}\bigg)}[/tex] and use the above equations and simplify it we will be having
[tex]{:\implies \quad \boxed{\bf{\dfrac{-h^2}{2m}\dfrac{d^{2}\psi (x)}{dx^{2}}+V(x)\psi (x)=E\psi (x)}}}[/tex]
This is the Famous Time-Independent Schrödinger wave equation
Note:- If I write all the explanation then the Answer box willn't allow me to submit the answer