Respuesta :

Answer:

a) 38.40 yd  (2 dp)

b) 211.18 yd²  (2 dp)

Step-by-step explanation:

Formula

[tex]\textsf{Arc length}=2 \pi r\left(\dfrac{\theta}{360^{\circ}}\right)[/tex]

[tex]\textsf{Area of a sector}=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2[/tex]

[tex]\quad \textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle in degrees)}[/tex]

Calculation

Given:

  • [tex]\theta[/tex] = 200°
  • r = 11 yd

[tex]\begin{aligned}\implies \textsf{Arc length} &=2 \pi (11)\left(\dfrac{200^{\circ}}{360^{\circ}}\right)\\ & = 22 \pi \left(\dfrac{5}{9}\right)\\ & = \dfrac{110}{9} \pi \\ & = 38.40\: \sf yd \:(2\:dp)\end{aligned}[/tex]

[tex]\begin{aligned} \implies \textsf{Area of a sector}& =\left(\dfrac{200^{\circ}}{360^{\circ}}\right) \pi (11)^2\\& = \left(\dfrac{5}{9}\right)\pi \cdot 121\\& = \dfrac{605}{9} \pi\\& = 211.18\: \sf yd^2 \:(2\:dp)\end{aligned}[/tex]

Please note:  As you have not specified if π should be approximated, I have not used an approximation for π.