Find (a) arc length and (b) Area of a sector.

Answer:
a) 38.40 yd (2 dp)
b) 211.18 yd² (2 dp)
Step-by-step explanation:
Formula
[tex]\textsf{Arc length}=2 \pi r\left(\dfrac{\theta}{360^{\circ}}\right)[/tex]
[tex]\textsf{Area of a sector}=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2[/tex]
[tex]\quad \textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle in degrees)}[/tex]
Calculation
Given:
[tex]\begin{aligned}\implies \textsf{Arc length} &=2 \pi (11)\left(\dfrac{200^{\circ}}{360^{\circ}}\right)\\ & = 22 \pi \left(\dfrac{5}{9}\right)\\ & = \dfrac{110}{9} \pi \\ & = 38.40\: \sf yd \:(2\:dp)\end{aligned}[/tex]
[tex]\begin{aligned} \implies \textsf{Area of a sector}& =\left(\dfrac{200^{\circ}}{360^{\circ}}\right) \pi (11)^2\\& = \left(\dfrac{5}{9}\right)\pi \cdot 121\\& = \dfrac{605}{9} \pi\\& = 211.18\: \sf yd^2 \:(2\:dp)\end{aligned}[/tex]
Please note: As you have not specified if π should be approximated, I have not used an approximation for π.