Please answer this question immediatly


Apple be A and blueberries be B
So
As per Venn diagram
#1
P(A)=12/24
P(B)=7/24
Add
#2.
n(AUB)
E=8+16=24
P(AUB)=16/24=2/3
Answer:
[tex]\sf a) \quad P(contains\:apple)+P(contains\:blueberry)=\dfrac{5}{6}[/tex]
[tex]\sf b) \quad P(contains\:apple\:or\:blueberry)=\dfrac{11}{15}[/tex]
c) Not mutually exclusive events
Step-by-step explanation:
From inspection of the Venn diagram:
[tex]\sf Probability\:of\:an\:event\:occurring = \dfrac{Number\:of\:ways\:it\:can\:occur}{Total\:number\:of\:possible\:outcomes}[/tex]
Let A = contains apple
Let B = contains blueberry
[tex]\implies\sf P(A)=\dfrac{15}{30}=\dfrac{1}{2}[/tex]
[tex]\implies\sf P(B)=\dfrac{10}{30}=\dfrac{1}{3}[/tex]
Part (a)
[tex]\begin{aligned} \implies \sf P(A)+P(B) & =\sf \dfrac{1}{2}+\dfrac{1}{3}\\\\ & = \sf \dfrac{3}{6}+\dfrac{2}{6}\\\\ & = \sf \dfrac{5}{6}\end{aligned}[/tex]
Part (b)
[tex]\textsf{Addition Law}: \quad\sf P(A\:or\: B) = P(A)+P(B)-P(A\:and\:B)[/tex]
Given:
[tex]\sf P(A)+P(B)=\dfrac{5}{6} \quad \textsf{(from part a)}[/tex]
[tex]\sf P(A\:and\:B)=\dfrac{3}{30}\quad \textsf{(where the circles overlap)}[/tex]
[tex]\begin{aligned}\implies \sf \sf P(A\:or\: B) &= \sf P(A)+P(B)-P(A\:and\:B)\\\\& =\sf \dfrac{5}{6}-\dfrac{3}{30}\\\\ & =\sf \dfrac{25}{30}-\dfrac{3}{30}\\\\ & =\sf \dfrac{22}{30}\\\\ & = \sf \dfrac{11}{15}\end{aligned}[/tex]
Or, we can simply read P(contains apple or blueberry) from the Venn diagram.
P(A or B) is the total of the numbers inside the circles divided by the total number of smoothies:
[tex]\sf P(A\:or\:B) = \dfrac{12+3+7}{30}=\dfrac{22}{30}=\dfrac{11}{15}[/tex]
Part (c)
For two events, A and B, where A and B are mutually exclusive:
[tex]\sf P(A \: or \: B)=P(A)+P(B)[/tex]
Given:
[tex]\sf P(A)+P(B)=\dfrac{5}{6} \quad \textsf{(from part a)}[/tex]
[tex]\sf P(A\:or\:B)=\dfrac{11}{15} \quad \textsf{(from part b)}[/tex]
[tex]\sf As\:\dfrac{11}{15}\neq \dfrac{5}{6} \implies P(A \: or \: B)\neq P(A)+P(B)[/tex]
Therefore, choosing a smoothie containing apple and choosing a smoothie containing blueberry are NOT mutually exclusive events.