Respuesta :

Answer:

Question 1:

Rectangular prism requires [tex] 10.185\: in^2[/tex] more material to make than the cylinder.

Question 4:

The cylindrical container holds [tex]\bold{60.16\: in^3}[/tex] more than the rectangular prism.

Step-by-step explanation:

Question 1:

  • In order to select the correct answer, we should find the surface areas (SA) of both cylindrical as well as rectangular containers. Let us start...
  • For cylindrical container:
  • h = 10 in & r = 4.5 in

  • [tex] SA (Cylindrical \:container) = 2\pi rh+2\pi r^2-\pi r^2[/tex] ([tex]\pi r^2[/tex] is subtracted because the container is open from the top)

  • [tex] SA (Cylindrical \:container) = 2\pi rh+\pi r^2[/tex]

  • [tex] SA (Cylindrical \:container) = 2(3.14)(4.5)(10)+3.14 (4.5)^2[/tex]

  • [tex]\implies \red{\boxed{\bold{SA (Cylindrical \:container) =346.185\: in^2}}}[/tex]

  • Next, we find the surface area of the rectangular container which has following dimensions.
  • [tex] l = 8\: in,\: b = 8\: in,\: h= 8.5\: in[/tex]

  • [tex] SA ( rectangular\: container) = 2(lb+bh+lh)-lb[/tex] (lb is subtracted because container is open from the top)

  • [tex] \implies SA ( rectangular\: container) = lb+2(bh+lh)[/tex]

  • [tex] \implies SA ( rectangular\: container) = 8*8+2(8*8.5+8*8.5)[/tex]

  • [tex] \implies \purple{\boxed{\bold{SA ( rectangular\: container) = 336\: in^2}}}[/tex]

  • Here, SA (Cylindrical container) > SA (rectangular container)

  • [tex] Difference = 346.185 - 336 = 10.185\: in^2[/tex]

  • [tex]\bigodot[/tex] This means: rectangular prism requires [tex]\bold{10.185\: in^2}[/tex] more material to make than the cylinder.

Question 4:

  • [tex] V_{Cylinderical\: container}= \pi r^2 h [/tex]

  • [tex] \implies V_{Cylinderical\: container} =3.14 (4)^2 (9)[/tex]

  • [tex]\implies\red{\boxed{\bold{V_{Cylindrical\: container}=452.16\: in^3}}}[/tex]

  • [tex]V_{rectangular\: container}= l*b* h[/tex]

  • [tex] \implies V_{rectangular\: container}= 7*7* 8[/tex]

  • [tex] \implies \orange{\boxed{\bold{V_{rectangular\: container}= 392\: in^3}}}[/tex]

  • Here, [tex] V_{Cylinder\: container}>V_{rectangular\: container}[/tex]
  • [tex] Difference = 452.16 - 392= 60.16\: in^3[/tex]

  • [tex]\bigodot[/tex] Thus, the cylindrical container holds [tex]\bold{60.16\: in^3}[/tex] more than the rectangular prism.