Respuesta :

sum of first n even nos =n(n+1)

sum of first n odd nos=n²

So

Simplify the numerator

  • x²x⁴x⁶..=x^(2+4+6..100times )

Simplify the denominator

  • xx³x⁵..=x^{1+3+5..100times)

Sum of first 100 even nos

  • 100(100-1)=100(99)=9900

Sum of first 100 odd nos

  • 100²=10000.

So

The equation yields as

  • E=x⁹⁹⁰⁰/x¹⁰⁰⁰⁰
  • E=1/x¹⁰⁰

Answer:

[tex]\sf E=\dfrac{x^2 \cdot x^4 \cdot x^6 \cdot x^8 ... 100\:factors}{x \cdot x^3 \cdot x^5 \cdot x^7 ... 100\:factors}=x^{100}[/tex]

Step-by-step explanation:

Given:

[tex]\sf E=\dfrac{x^2 \cdot x^4 \cdot x^6 \cdot x^8 ...}{x \cdot x^3 \cdot x^5 \cdot x^7 ... }[/tex]

As:

[tex]\sf E=\dfrac{x^2 \cdot x^4 \cdot x^6 \cdot x^8 \cdot ... }{x \cdot x^3 \cdot x^5 \cdot x^7 \cdot ... }=\dfrac{x^2}{x^1} \cdot \dfrac{x^4}{x^3} \cdot \dfrac{x^6}{x^5} \cdot \dfrac{x^8}{x^7} \cdot ...}[/tex]

Apply the exponent rule  [tex]\sf \dfrac{a^b}{a^c}=a^{b-c}[/tex]

[tex]\begin{aligned}\sf \implies \dfrac{x^2}{x^1} \cdot \dfrac{x^4}{x^3} \cdot \dfrac{x^6}{x^5} \cdot \dfrac{x^8}{x^7} \cdot... & = \sf x^{(2-1)} \cdot x^{(4-3)} \cdot x^{(6-5)} \cdot x^{(8-7)} \cdot ...\\ & = \sf x^1 \cdot x^1 \cdot x^1 \cdot x^1 \cdot ...\end{aligned}[/tex]

As there are 100 factors, then [tex]\sf x^1[/tex] is multiplied by itself 100 times ⇒ [tex]\sf x^{100}[/tex]

Therefore:

[tex]\sf E=\dfrac{x^2 \cdot x^4 \cdot x^6 \cdot x^8 ... 100\:factors}{x \cdot x^3 \cdot x^5 \cdot x^7 ... 100\:factors}=x^{100}[/tex]