help evaluating the indefinite integral

Answer:
[tex]\displaystyle \int {\frac{x}{\sqrt{4 - x^2}}} \, dx = \boxed{ -\sqrt{4 - x^2} + C }[/tex]
General Formulas and Concepts:
Calculus
Differentiation
Derivative Property [Multiplied Constant]:
[tex]\displaystyle (cu)' = cu'[/tex]
Derivative Property [Addition/Subtraction]:
[tex]\displaystyle (u + v)' = u' + v'[/tex]
Derivative Rule [Basic Power Rule]:
Integration
Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Methods: U-Substitution and U-Solve
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \int {\frac{x}{\sqrt{4 - x^2}}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution/u-solve.
Step 3: Integrate Pt. 2
∴ we have used u-solve (u-substitution) to find the indefinite integral.
---
Learn more about integration: https://brainly.com/question/27746495
Learn more about Calculus: https://brainly.com/question/27746485
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration