Respuesta :

Space

Answer:

[tex]\displaystyle \int {e^{5x}} \, dx = \boxed{ \frac{e^{5x}}{5} + C }[/tex]

General Formulas and Concepts:
Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
[tex]\displaystyle (cu)' = cu'[/tex]
Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Methods: U-Substitution

Step-by-step explanation:

Step 1: Define

Identify given.

[tex]\displaystyle \int {e^{5x}} \, dx[/tex]

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    [tex]\displaystyle u = 5x[/tex]
  2. [u] Differentiate [Derivative Rules and Properties]:
    [tex]\displaystyle du = 5 \ dx[/tex]

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    [tex]\displaystyle \begin{aligned}\int {e^{5x}} \, dx & = \frac{1}{5} \int {5e^{5x}} \, dx \\\end{aligned}[/tex]
  2. [Integral] Apply Integration Method [U-Substitution]:
    [tex]\displaystyle \begin{aligned}\int {e^{5x}} \, dx & = \frac{1}{5} \int {5e^{5x}} \, dx \\& = \frac{1}{5} \int {e^u} \, du \\\end{aligned}[/tex]
  3. [Integral] Apply Exponential Integration:
    [tex]\displaystyle \begin{aligned}\int {e^{5x}} \, dx & = \frac{1}{5} \int {5e^{5x}} \, dx \\& = \frac{1}{5} \int {e^u} \, du \\& = \frac{e^u}{5} + C \\\end{aligned}[/tex]
  4. [u] Back-substitute:
    [tex]\displaystyle \begin{aligned}\int {e^{5x}} \, dx & = \frac{1}{5} \int {5e^{5x}} \, dx \\& = \frac{1}{5} \int {e^u} \, du \\& = \frac{e^u}{5} + C \\& = \boxed{ \frac{e^{5x}}{5} + C } \\\end{aligned}[/tex]

∴ we have used substitution to evaluate the indefinite integral.

---

Learn more about integration: https://brainly.com/question/27746495

Learn more about Calculus: https://brainly.com/question/27593180

---

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration