Answer:
[tex]\displaystyle \int\limits^{\frac{\pi}{3}}_0 {\cos^2 \theta \sin \theta} \, d\theta = \boxed{ \frac{7}{24} }[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Integration
Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Methods: U-Substitution and U-Solve
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \int\limits^{\frac{\pi}{3}}_0 {\cos^2 \theta \sin \theta} \, d\theta[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution/u-solve.
- Set u:
[tex]\displaystyle u = \cos \theta[/tex] - [u] Differentiate [Trigonometric Differentiation]:
[tex]\displaystyle du = - \sin \theta \ d\theta[/tex] - [du] Rewrite [U-Solve]
[tex]\displaystyle d\theta = - \csc \theta \ du[/tex] - [Limits] Swap:
[tex]\displaystyle \left \{ {{ \theta = \frac{\pi}{3} } \atop { \theta = 0 }} \right. \rightarrow \left \{ {{ u = \cos \bigg( \frac{\pi}{3} \bigg) } \atop { u = \cos 0}} \right. \rightarrow \left \{ {{ u = \frac{1}{2} } \atop { u = 1 }} \right.[/tex]
Step 3: Integrate Pt. 2
- [Integrand] Rewrite:
[tex]\displaystyle \begin{aligned}\int\limits^{\frac{\pi}{3}}_0 {\cos^2 \theta \sin \theta} \, d\theta & = \int\limits^{\frac{\pi}{3}}_0 {\cos \theta \cos \theta \sin \theta} \, d\theta \\\end{aligned}[/tex] - [Integral] Apply Integration Method [U-Solve]:
[tex]\displaystyle \begin{aligned}\int\limits^{\frac{\pi}{3}}_0 {\cos^2 \theta \sin \theta} \, d\theta & = \int\limits^{\frac{\pi}{3}}_0 {\cos \theta \cos \theta \sin \theta} \, d\theta \\& = \int\limits^{\frac{1}{2}}_0 {u^2 \sin \theta \csc \theta} \, du \\\end{aligned}[/tex] - [Integrand] Simplify:
[tex]\displaystyle \begin{aligned}\int\limits^{\frac{\pi}{3}}_0 {\cos^2 \theta \sin \theta} \, d\theta & = \int\limits^{\frac{\pi}{3}}_0 {\cos \theta \cos \theta \sin \theta} \, d\theta \\& = \int\limits^{\frac{1}{2}}_0 {u^2 \sin \theta \csc \theta} \, du \\& = \int\limits^{\frac{1}{2}}_0 {u^2} \, du \\\end{aligned}[/tex] - [Integral] Apply Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \begin{aligned}\int\limits^{\frac{\pi}{3}}_0 {\cos^2 \theta \sin \theta} \, d\theta & = \int\limits^{\frac{\pi}{3}}_0 {\cos \theta \cos \theta \sin \theta} \, d\theta \\& = \int\limits^{\frac{1}{2}}_0 {u^2 \sin \theta \csc \theta} \, du \\& = \int\limits^{\frac{1}{2}}_0 {u^2} \, du \\& = \frac{u^3}{3} \bigg| \limits^{\frac{1}{2}}_0 \\\end{aligned}[/tex] - Apply Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \begin{aligned}\int\limits^{\frac{\pi}{3}}_0 {\cos^2 \theta \sin \theta} \, d\theta & = \int\limits^{\frac{\pi}{3}}_0 {\cos \theta \cos \theta \sin \theta} \, d\theta \\& = \int\limits^{\frac{1}{2}}_0 {u^2 \sin \theta \csc \theta} \, du \\& = \int\limits^{\frac{1}{2}}_0 {u^2} \, du \\& = \frac{u^3}{3} \bigg| \limits^{\frac{1}{2}}_0 \\& = \frac{\bigg( \frac{1}{2} \bigg) ^3}{3} - \frac{0}{3} \\\end{aligned}[/tex] - Evaluate:
[tex]\displaystyle \begin{aligned}\int\limits^{\frac{\pi}{3}}_0 {\cos^2 \theta \sin \theta} \, d\theta & = \int\limits^{\frac{\pi}{3}}_0 {\cos \theta \cos \theta \sin \theta} \, d\theta \\& = \int\limits^{\frac{1}{2}}_0 {u^2 \sin \theta \csc \theta} \, du \\& = \int\limits^{\frac{1}{2}}_0 {u^2} \, du \\& = \frac{u^3}{3} \bigg| \limits^{\frac{1}{2}}_0 \\& = \frac{\bigg( \frac{1}{2} \bigg) ^3}{3} - \frac{0}{3} \\& = \boxed{ \frac{7}{24} }\end{aligned}[/tex]
∴ the exact value of the definite integral is equal to 7/24.
---
Learn more about integration: https://brainly.com/question/24705479
Learn more about Calculus: https://brainly.com/question/27593180
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration