Respuesta :

Given :

  • Side of rhombus = 20 cm

  • Diagonal_1 of rhombus = 24 cm

[tex] \\ \\ [/tex]

To find :

  • Diagonal_2 of rhombus

[tex] \\ \\ [/tex]

Note :

Kindly keep in touch with picture

[tex] \\ \\ [/tex]

Solution:

We know:

[tex] \bigstar \boxed{ \rm Area = \dfrac{Diagonal_1 \times Diagonal_2 }{2}}[/tex]

As we can clearly see we need both diagonals, but in question only one diagonal is given.

[tex] \\ [/tex]

So first let's find other diagonal.

[tex] \\ [/tex]

[tex] \red{\textsf{ \textbf{To find Diagonal}}} \red{\sf\pmb{_2}} \leadsto[/tex]

[tex] \\ [/tex]

In △ AOB :

AB - Hypotenuse

AO = Perpendicular

BO = Base

[tex] \\ [/tex]

Base² = Hypotenuse ² - Perpendicular²

∴ BO² = AB² - AO²

  • BO² = 20² - 12²
  • BO² = 400 - 12²
  • BO² = 400 - 144
  • BO² = 256
  • BO = √(256)
  • BO = √(16 × 16)
  • BO = 16 cm²

[tex] \\ [/tex]

  • Diagonal_2 = 2BO
  • Diagonal_2 = 2 × 16
  • Diagonal_2 = 32 cm

[tex] \\ \\ [/tex]

[tex] \red{\textsf{ \textbf{To find Area}}} \leadsto[/tex]

[tex] \\ [/tex]

As we already know Area of rhombus so :

[tex]\twoheadrightarrow\sf Area = \dfrac{Diagonal_1 \times Diagonal_2 }{2} \\ [/tex]

[tex] \\ \\ [/tex]

[tex]\twoheadrightarrow\sf Area = \dfrac{32 \times 24}{2} \\ [/tex]

[tex] \\ \\ [/tex]

[tex]\twoheadrightarrow\sf Area = \dfrac{768}{2} \\ [/tex]

[tex] \\ \\ [/tex]

[tex]\twoheadrightarrow\bf Area = \red {384 {cm}^{2} } \\ [/tex]

Ver imagen WindyMint