Respuesta :
LHS = tan(45° - A)
[tex]=\frac{tan45-tanA}{1+tan45tanA}[/tex]
[tex]=\frac{1-tanA}{1+tanA} =RHS[/tex]
Answer:
See below ~
Step-by-step explanation:
Solving :
Taking the LHS :
- tan (45 + A)
Formula :
- tan (x + y) = tan x + tan y / 1 - (tan x)(tan y)
Solving :
- tan (45 + A) = tan 45° + tan A / 1 - (tan 45°)(tan A)
- tan (45 + A) = 1 + tan A / 1 - tan A (because tan 45° = 1)
- Equal to the RHS
∴ Hence, it is proved √