if f(x)=In(x) and g(x) is f(x) translated right one unit and down nine units then reflected over the x axis, what would g(30) be?

A. -5.9
B. -12.1
C. -12.4
D. -20.1​

Respuesta :

Answer:

Translations

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

[tex]y=-\:f\:(x) \implies f(x) \: \textsf{reflected in the} \: x \textsf{-axis}[/tex]

[tex]y=f\:(-\:x) \implies f(x) \: \textsf{reflected in the} \: y \textsf{-axis}[/tex]

Parent function:  [tex]f\:(x) = \ln(x)[/tex]

Translated right 1 unit:  [tex]f\:(x\:-1) = \ln(x - 1)[/tex]

Then translated down 9 units: [tex]f\:(x\: -1)-9 = \ln(x - 1) - 9[/tex]

The reflected over the x-axis:  [tex]-\:[f\:(x\:-1) - 9] = -\ln(x - 1) + 9[/tex]

Therefore, [tex]g(x) = -\ln\:(x\:- 1) + 9[/tex]

⇒ g(30) = - ln(30 - 1) + 9

             = -3.36729... + 9

             = 5.6 (nearest tenth)

Ver imagen semsee45

Otras preguntas