Respuesta :

Answer:

[tex]y = 3\left(x-\dfrac{3}{2}\right)^2+\dfrac{41}{4}[/tex]

Step-by-step explanation:

Given equation:

[tex]y = 3x^2 - 9x + 17[/tex]

Factor out 3 from the first 2 terms:

[tex]y = 3(x^2 - 3x) + 17[/tex]

Divide the coefficient of x by 2 and square it:  (-3 ÷ 2)² = 9/4

Add this inside the parentheses and subtract the distributed value of it outside the parentheses:

[tex]y = 3\left(x^2 - 3x+\dfrac{9}{4}\right) + 17-\dfrac{27}{4}[/tex]

Factor the parentheses and combine the constants:

[tex]y = 3\left(x-\dfrac{3}{2}\right)^2+\dfrac{41}{4}[/tex]