Respuesta :
#1
Volume
- πr²h
- π(5)²(4)
- 100π
- 3.14(100)
- 314cm³
#2
Radius=10/2=5cm
Volume
- 4/3πr³
- 4/3π(5)³
- 125(4/3π)
- 500π/3
- 523.3cm³
#3
Volume
- π(4/2)²(7)
- 2²(7π)
- 28π
- 87.92in³
#4
- V=1/3a²h
- V=1/3(81)h
- 27h=297
- h=11cm
#5
radius=8/2=4
Volume
- π(4)²(10)
- 160π
- 502.4cm³
- 502.4mL
Answer:
1) 314 cm³
2) 523.33 cm³
3) 87.92 in³
4) 11 cm
5) 502.4 cm³
Step-by-step explanation:
Part 1
[tex]\textsf{Volume of a cylinder}=\sf \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]
Given:
- r = 5 cm
- h = 4 cm
- π = 3.14
Substitute the given values into the formula:
[tex]\begin{aligned}\implies \textsf{Volume} & =3.14 \cdot 5^2 \cdot 4\\& = 3.14 \cdot 25 \cdot 4\\& = 3.14 \cdot 100\\& = 314 \: \sf cm^3\end{aligned}[/tex]
Part 2
[tex]\textsf{Volume of a sphere}=\sf \dfrac43 \pi r^3\quad\textsf{(where r is the radius)}[/tex]
Given:
- d = 10 cm ⇒ r = 5 cm
- π = 3.14
Substitute the given values into the formula:
[tex]\begin{aligned}\implies \textsf{Volume} & =\dfrac{4}{3} \cdot 3.14 \cdot 5^3 \\& =\dfrac{4}{3} \cdot 3.14 \cdot 125 \\& =\dfrac{500}{3} \cdot 3.14 \\& = 523.33\: \sf cm^3\:(2\:dp)\end{aligned}[/tex]
Part 3
[tex]\textsf{Volume of a cylinder}=\sf \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]
Given:
- d = 4 in ⇒ r = 2 in
- h = 7 in
- π = 3.14
Substitute the given values into the formula:
[tex]\begin{aligned}\implies \textsf{Volume} & =3.14 \cdot 2^2 \cdot 7\\& = 3.14 \cdot 4 \cdot 7\\& = 3.14 \cdot 28\\& = 87.92\: \sf in^3\end{aligned}[/tex]
Part 4
[tex]\textsf{Volume of a square pyramid}=\sf \dfrac{1}{3} a^2h \quad\textsf{(where a is the base edge and h is the height)}[/tex][tex]\textsf{Area of base of square pyramid}=\sf a^2 \quad\textsf{(where a is the base edge)}[/tex]
Given:
- Volume = 297 cm³
- Area of base = 81 cm²
[tex]\implies 81=a^2[/tex]
[tex]\implies a=\sqrt{81}[/tex]
[tex]\implies a=9\: \sf cm[/tex]
Substitute the given values into the formula and solve for h:
[tex]\begin{aligned}\implies \textsf{297} & =\dfrac{1}{3} \cdot 9^2 \cdot h\\\\297 & =\dfrac{81}{3} h\\\\891 & =81 h\\\\h & = 11 \: \sf cm\end{aligned}[/tex]
Part 5
[tex]\textsf{Volume of a cylinder}=\sf \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]
Given:
- d = 8 cm ⇒ r = 4 cm
- h = 10 cm
- π = 3.14
Substitute the given values into the formula:
[tex]\begin{aligned}\implies \textsf{Volume} & =3.14 \cdot 4^2 \cdot 10\\& = 3.14 \cdot 16 \cdot 10\\& = 3.14 \cdot 160\\& = 502.4\: \sf cm^3\end{aligned}[/tex]