Respuesta :
Answer:
67 m/s
Step-by-step explanation:
Formula for range :
- Range = u²sin2θ / g
- u = initial velocity
- θ = angle of launch
- g = gravitational acceleration
Solving with the given values :
- 400 = u² x sin60° / 9.8
- u² x √3/2 = 3920
- u² = 7840/√3
- u² = 4526.4
- u = 67 m/s (approximately)
Answer:
[tex]\sf u=67\:ms^{-1}[/tex]
Step-by-step explanation:
Assuming the distance traveled is the horizontal distance.
Horizontal Range Formula
[tex]\sf R=\dfrac{u^2 \sin 2\theta}{g}[/tex]
where:
- R = horizontal range
- u = initial velocity
- [tex]\theta[/tex] = angle of initial velocity
- g = acceleration due to gravity
Given:
- R = 400 m
- [tex]\theta[/tex] = 30°
- g = 9.8 m/s²
Substituting the given values into the formula and solving for u:
[tex]\implies \sf 400=\dfrac{u^2 \sin 60^{\circ}}{9.8}[/tex]
[tex]\implies \sf 3920=u^2 \sin 60^{\circ}[/tex]
[tex]\implies \sf 3920=\left(\dfrac{\sqrt{3}}{2}\right)u^2[/tex]
[tex]\implies \sf u^2=\dfrac{7840}{\sqrt{3}}[/tex]
[tex]\implies \sf u=\sqrt{\left(\dfrac{7840}{\sqrt{3}} \right) }[/tex]
[tex]\implies \sf u=67.2787196...[/tex]
[tex]\implies \sf u=67\:ms^{-1}\:(nearest\:whole\:number)[/tex]