Respuesta :
Question has errors in typing that 572 should be √57/2
Because if it's 572 then 2a=1 so
- a=1/2
Also
- -7=1/2b
- b=-7(2)
- b=-14
c also comes different
If it's like what I said
then
- 2a=2
- a=1
and
- -b=-7
- b=7
By putting values
- c=-2
Option B can be correct
Answer:
B: a = 1, b= 7, c = -2
Step-by-step explanation:
Quadratic Formula
[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when}\:ax^2+bx+c=0[/tex]
Given:
[tex]x=\dfrac{-7\pm\sqrt{57}}{2}[/tex]
Comparing the terms of the given x-value with those of the quadratic formula:
[tex]\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}=\dfrac{-7\pm\sqrt{57}}{2}[/tex]
Therefore:
- [tex]2a=2 \implies a=1[/tex]
- [tex]b = 7[/tex]
- [tex]b^2-4ac=57[/tex]
Using the found values of a and b to solve for c:
[tex]\implies b^2-4ac=57[/tex]
[tex]\implies (7)^2-4(1)c=57[/tex]
[tex]\implies 49-4c=57[/tex]
[tex]\implies -4c=57-49[/tex]
[tex]\implies -4c=8[/tex]
[tex]\implies c=-2[/tex]
In summary: a = 1, b = 7, c = -2
[tex]\implies x^2+7x-2=0[/tex]
Therefore, option B is the correct solution.