Evaluate the surface integral ∫sf⋅ ds∫sf⋅ ds where f=−4xyi x2j−4yzk f=−4xyi x2j−4yzk and ss is the surface z=xey, 0≤x≤1,0≤y≤1z=xey, 0≤x≤1,0≤y≤1, with upwards orientation

Respuesta :

The value of the surface integral ∫sf⋅ ds∫sf⋅ ds is (1-e)/4 if f=−4xyi x2j−4yzk f=−4xyi x2j−4yzk

What is integration?

It is defined as the mathematical calculation by which we can sum up all the smaller parts into a unit.

The surface integral is given by:

[tex]= \rm \int\limits \int_S\ {F.} \, ds[/tex]

F = −4xyi + x²j − 4yzk

P(x,y,z) = -4xy, Q(x,y,z) = x², R(x,y,z) = -4yz,

[tex]\rm g(x, y) = z=xe^y[/tex]

∂g/∂x = [tex]\rm \rm e^y[/tex]

∂g/∂y = [tex]\rm xe^y[/tex]

[tex]\rm \int\limits \int_S\ {F.} \, ds = \int\limits^1_0 \int\limits^1_0 [ {-P\frac{\partial g}{\partial x}} \, -Q\frac{\partial g}{\partial y} + R] dA[/tex]

Plug all values and solve we will get:

[tex]\rm \int\limits \int_S\ {F.} \, ds = \int _0^1\int _0^1\:\left(4xy\left(e^y\right)-x^2\left(xe^y\right)-4y\left(xe^y\right)\right)dydx[/tex]

[tex]\rm \int\limits \int_S\ {F.} \, ds = \dfrac{1-e}{4}[/tex]

Thus, the value of the surface integral ∫sf⋅ ds∫sf⋅ ds is (1-e)/4 if f=−4xyi x2j−4yzk f=−4xyi x2j−4yzk

Learn more about integration here:

brainly.com/question/18125359

#SPJ4