Respuesta :

Answer:

23/45

Step-by-step explanation:

Answer:

23/45

Step-by-step explanation:

1) Convert [tex]1\frac{2}{3}[/tex]  to improper fraction. Use this rule: [tex]a \frac{b}{c}=\frac{ac+b}{c}[/tex]

[tex]\frac{\frac{1\times 3+2}{3}-\frac{3}{5}}{3}\times \frac{1}{2}+\frac{1}{3}[/tex]

2) Simplify [tex]1\times 3[/tex] to  [tex]3[/tex].

[tex]\frac{\frac{3+2}{3}-\frac{3}{5}}{3}\times \frac{1}{2}+\frac{1}{3}[/tex]

3) Simplify  [tex]3+2[/tex]  to  [tex]5[/tex].

[tex]\frac{\frac{5}{3}-\frac{3}{5}}{3}\times \frac{1}{2}+\frac{1}{3}[/tex]

4)  Find the Least Common Denominator (LCD) of [tex]\frac{5}{3},\frac{3}{5}[/tex]. In other words, find the Least Common Multiple (LCM) of 3,5.

Method 1: By Listing Multiples

1 -  List the multiples of each number.

Multiples of 3 : 3, 6, 9, 12, 15, ...

Multiples of 5 : 5, 10, 15, ...

2 -  Find the smallest number that is shared by all rows above. This is the LCM.

LCM = 15

Method 2: By Prime Factors

1- List the prime factors of each number.

Prime Factors of 3 : 3

Prime Factors of 5 : 5

2 - Find the union of these primes.

3, 5

3- Multiply these numbers:[tex]3\times 5=15[/tex],. This is the LCM.

LCM = 15

5) Make the denominators the same as the LCD.

[tex]\frac{5\times 5}{3\times 5}-\frac{3\times 3}{5\times 3}[/tex]

6) Simplify. Denominators are now the same.

[tex]\frac{25}{15}-\frac{9}{15}[/tex]

7) Join the denominators.

[tex]\frac{25-9}{15}[/tex]

8) Simplify[tex]\frac{5}{3}-\frac{3}{5}[/tex]  to [tex]\frac{16}{15}[/tex]

[tex]\frac{\frac{16}{15}}{3}\times \frac{1}{2}+\frac{1}{3}[/tex]

9) Simplify  [tex]\frac{\frac{16}{15}}{3}[/tex] to    [tex]\frac{16}{15\times 3}[/tex].

[tex]\frac{16}{15\times 3}\times \frac{1}{2}+\frac{1}{3}[/tex]

10) Simplify [tex]15\times 3[/tex] to  [tex]45.[/tex]

[tex]\frac{16}{45}\times \frac{1}{2}+\frac{1}{3}[/tex]

11)  Use this rule: [tex]\frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}.[/tex]

[tex]\frac{16\times 1}{45\times 2}+\frac{1}{3}[/tex]

12) Simplify [tex]16\times 1[/tex] to  16.

[tex]\frac{16}{45\times 2}+\frac{1}{3}[/tex]

13) Simplify  [tex]45\times 2[/tex]  to  90.

[tex]\frac{16}{90}+\frac{1}{3}[/tex]

14) Simplify [tex]\frac{16}{90}[/tex] to [tex]\frac{8}{45}[/tex].

[tex]\frac{8}{45}+\frac{1}{3}[/tex]

15) Find the Least Common Denominator (LCD) of [tex]\frac{8}{45},\frac{1}{3}[/tex] . In other words, find the Least Common Multiple (LCM) of 45, 3.

Method 1: By Listing Multiples

1 - List the multiples of each number.

Multiples of 45 : 45, ...

Multiples of 3 : 3, 6, 9, ... , 39, 42, 45, ...

2 -  Find the smallest number that is shared by all rows above. This is the LCM.

LCM = 45

Method 2: By Prime Factors

1 - List the prime factors of each number.

Prime Factors of 45 : 3, 3, 5

Prime Factors of 3 : 3

2 -  Find the union of these primes.

3, 3, 5

Multiply these numbers[tex]: 3\times 3\times 5=45[/tex]. This is the LCM.

LCM = 45

Result: [tex]LCD=45[/tex]

16)  Make the denominators the same as the LCD.

[tex]\frac{8}{45}+\frac{1\times 15}{3\times 15}[/tex]

17) Simplify. Denominators are now the same.

[tex]\frac{8}{45}+\frac{15}{45}[/tex]

18)  Join the denominators.

[tex]\frac{8+15}{45}[/tex]

19) Simplify.

[tex]\frac{23}{45}[/tex]

Decimal Form: 0.511111