A circus tent is cylindrical up to a height of 7 m and is in the shape of a cone over it, the diameter of the cylindrical part is 10 m and the total height of the tent is 19 m. Find the cost of making the tent at a cost of 35 per square meter of cloth.

please help me on this and ​

Respuesta :

[tex]\bold{\huge{\underline{ Solution }}}[/tex]

Given :-

• The circus tent is composed of cylinder and a cone.

• The height and diameter of the cylindrical part are 7m and 10m

• The total height of the circus tent 19m

• The cost of making the tent at a cost of 35 m² cloth.

Let's Begin :-

Here, we have ,

  • Cylinder and cone
  • The height and diameter of the cylinder are 7m and 10m
  • Therefore , radius = 5 m

We know that,

Curved Surface area of the cylinder

[tex]\sf{ = 2{\pi}rh}[/tex]

Subsitute the required values,

[tex]\sf{ = 2{\times}3.14{\times}5{\times}7}[/tex]

[tex]\sf{ = 6.28 {\times}5{\times}7}[/tex]

[tex]\sf{ = 6.28 {\times}35}[/tex]

[tex]\bold{ = 219.8m^{2}}[/tex]

Thus, The area of the cylinder is 219.8m² .

Now,

•We have to find the area of the cone.

•Here, Base of cone = diameter of the cylinder.

The height of the cone will be

= Height of the tent - Height of cylinder

[tex]\sf{ = 19 - 7 }[/tex]

[tex]\bold{ = 12 m }[/tex]

We know that,

Area of cone

[tex]\bold{ = {\pi}rl }[/tex]

  • Here, l is the slant height.

Slant height of the cone

[tex]\sf{ = \sqrt{ h^{2} + r^{2}} }[/tex]

[tex]\sf{ = \sqrt{ (12)^{2} + (5)^{2}} }[/tex]

[tex]\sf{ = \sqrt{ 144 + 25}}[/tex]

[tex]\sf{ = \sqrt{ 169}}[/tex]

[tex]\sf{ = \sqrt{ 13{\times} 13 }}[/tex]

[tex]\bold{ = 13 m }[/tex]

Thus, The slant height of the cone is 13 m

Subsitute the required values in the above formula

[tex]\sf{ = 3.14 {\times} 5 {\times} 13}[/tex]

[tex]\sf{ = 3.14 {\times} 65}[/tex]

[tex]\bold{ = 204.1 m^{2}}[/tex]

Thus, The area of the cone is 204.1 .

Therefore ,

The total area of the circus tent

[tex]\sf{ = 204.1 + 219.8}[/tex]

[tex]\bold{ = 423.9m^{2} \: or \: 424 m^{2}}[/tex]

Now,

  • We have to find the total cost of making the tent.
  • The cost for 1 m² = 35

Therefore,

The total cost for making the circus tent

[tex]\sf{ = 424 {\times} 35}[/tex]

[tex]\bold{ = 14840}[/tex]

Hence, The total cost for making the tent is 14840 .

Ver imagen Starrysoul100

Given:-

  • Diameter of cylinder=10m
  • Height of cylinder=7m
  • Height of tent=19m

Formalise :-

  • Radius of cylinder=r=10/2=5m
  • Height=h=7m

TSA of cylinder

  • 2πr(h+r)
  • 2π(5)(5+7)
  • 10π(12)
  • 120π
  • 376.8m²

For cone

  • radius=r=5m
  • Height=h=19-7=12m

Find slant height=l

  • l²=h²+r²
  • l²=12²+5²
  • l²=144+25
  • l²=169
  • l=13m

Now

LSA of cone

  • πrl
  • π(5)(13)
  • 65π
  • 204.1m²

Total area of tent

  • 204.1+376.8
  • 580.9m²

But look at the attachment

  • We can't paint the shaded region which is base of cone and a circle

So

area of shaded region

  • πr²
  • 5²π
  • 25π
  • 78.5m²

TOTAL area to be painted

  • 580.9-78.5
  • 502.4m²

Total cost

  • 502.4(35)
  • $17584
Ver imagen Аноним