The increasing order of the complex numbers is (√2 - i)⁶ < (√2 - √2i)⁸ = (√3 - i)⁶ = (-1 + √3i)¹² < (√3 - √3i)⁴.
The absolute values of the complex numbers are determined as follows;
(sqrt3-sqrt3i)^4 = (√3 - √3i)⁴
[tex]|z| = \sqrt{(\sqrt{3} )^2 + (\sqrt{3 }\times1 )^2} } \\\\|z| = \sqrt{6}[/tex]
(-1+sqrt3i)^12 = (-1 + √3i)¹²
[tex]|z| = \sqrt{(-1)^2 + (\sqrt{3)^2} } \\\\|z| = \sqrt{4} \\\\|z| = 2[/tex]
(sqrt 3-i)^6 = (√3 - i)⁶
[tex]|z| = \sqrt{(\sqrt{3})^2 + (-1)^2 } \\\\|z| = \sqrt{4} \\\\|z| = 2[/tex]
(sqrt2-sqrt2i)^8 = (√2 - √2i)⁸
[tex]|z| = \sqrt{(\sqrt{2} )^2 + (\sqrt{2})^2 } \\\\|z| = 2[/tex]
(sqrt2-i)^6 = (√2 - i)⁶
[tex]|z| = \sqrt{(\sqrt{2})^2 + (-1)^2} } \\\\|z| = \sqrt{3}[/tex]
Increasing order of the complex numbers;
(√2 - i)⁶ < (√2 - √2i)⁸ = (√3 - i)⁶ = (-1 + √3i)¹² < (√3 - √3i)⁴.
Learn more about complex numbers here: https://brainly.com/question/10662770
#SPJ1