(sqrt3-sqrt3i)^4
(-1+sqrt3i)^12
(sqrt 3-i)^6
(sqrt2-sqrt2i)^8
(sqrt2-i)^6Simplify the complex numbers and arrange them in increasing order of their absolute value (modulus).

Respuesta :

The increasing order of the complex numbers is (√2 - i)⁶ < (√2 - √2i)⁸ = (√3 - i)⁶ =  (-1 + √3i)¹² < (√3 - √3i)⁴.

Absolute values of the complex numbers

The absolute values of the complex numbers are determined as follows;

(sqrt3-sqrt3i)^4 = (√3 - √3i)⁴

[tex]|z| = \sqrt{(\sqrt{3} )^2 + (\sqrt{3 }\times1 )^2} } \\\\|z| = \sqrt{6}[/tex]

(-1+sqrt3i)^12 = (-1 + √3i)¹²

[tex]|z| = \sqrt{(-1)^2 + (\sqrt{3)^2} } \\\\|z| = \sqrt{4} \\\\|z| = 2[/tex]

(sqrt 3-i)^6 = (√3 - i)⁶

[tex]|z| = \sqrt{(\sqrt{3})^2 + (-1)^2 } \\\\|z| = \sqrt{4} \\\\|z| = 2[/tex]

(sqrt2-sqrt2i)^8 = (√2 - √2i)⁸

[tex]|z| = \sqrt{(\sqrt{2} )^2 + (\sqrt{2})^2 } \\\\|z| = 2[/tex]

(sqrt2-i)^6 = (√2 - i)⁶

[tex]|z| = \sqrt{(\sqrt{2})^2 + (-1)^2} } \\\\|z| = \sqrt{3}[/tex]

Increasing order of the complex numbers;

(√2 - i)⁶ < (√2 - √2i)⁸ = (√3 - i)⁶ =  (-1 + √3i)¹² < (√3 - √3i)⁴.

Learn more about complex numbers here: https://brainly.com/question/10662770

#SPJ1