Respuesta :

The roots of the given function are [tex]x = 3[/tex],  [tex]x = \frac{3+\sqrt{29} }{2}[/tex] and [tex]x = \frac{3-\sqrt{29} }{2}[/tex]. The correct options are A, E and F

Determining roots of a polynomial function

From the question, we are to determine which of the given options are roots of the polynomial function

The given polynomial function is

[tex]f(x) = x^{3} -6x^{2}+4x+15[/tex]

First, we will determine one of the zeros of the given function.

Testing for some integers by putting them into the function, we determine that

[tex]f(3) =0[/tex]

As shown here,

[tex]f(3) = 3^{3} -6(3)^{2}+4(3)+15[/tex]

[tex]f(3) = 27 -54+12+15[/tex]

[tex]f(3) = 0[/tex]

Then, one of the roots of the function is 3

∴ x = 3

If x = 3, then x - 3 must be a factor of the equation.

By factoring,

[tex]x^{3} -6x^{2}+4x+15=(x-3)(x^{2} -3x-5)[/tex]

To determine the remaining roots of the function, we will solve x² -3x -5 quadratically

x² -3x -5 = 0

Using the general formula for quadratic equation,

[tex]x = \frac{-b \pm\sqrt{b^{2}-4ac } }{2a}[/tex]

a = 1, b = -3, and  c = -5

Putting the values into the formula,

[tex]x = \frac{-(-3) \pm\sqrt{(-3)^{2}-4(1)(-5)} }{2(1)}[/tex]

[tex]x = \frac{3\pm\sqrt{9+20} }{2}[/tex]

[tex]x = \frac{3\pm\sqrt{29} }{2}[/tex]

∴ [tex]x = \frac{3+\sqrt{29} }{2}[/tex] OR [tex]x = \frac{3-\sqrt{29} }{2}[/tex]

Hence, the roots of the given function are [tex]x = 3[/tex],  [tex]x = \frac{3+\sqrt{29} }{2}[/tex] and [tex]x = \frac{3-\sqrt{29} }{2}[/tex]. The correct options are A, E and F.

Learn more on Determining the roots of a function here: https://brainly.com/question/14193054

#SPJ1