Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

[tex] \\ \\ [/tex]

[tex] \textbf{Let's verify each statement according to} [/tex][tex] \textbf{ the given graph} [/tex] ~

[tex] \\ [/tex]

[tex]\huge \textsf{ Statement : 1 -} [/tex][tex]\displaystyle \sf\lim_{x \rightarrow - 3}f(x)[tex] \textsf{ exists and is equal to 1}[/tex]

[tex] \\ \\ [/tex]

[tex] \texttt{In the graph we can see, that at x = -3 } [/tex][tex] \texttt{there exists no value f(x) as the function } [/tex][tex] \texttt{is discontinuous at x = -3, therefore the} [/tex][tex] \texttt{statement is incorrect.} [/tex]

[tex] \\ \\ \\ [/tex]

[tex]\huge \textsf{ Statement : 2 -} [/tex][tex]\displaystyle \sf\lim_{x \rightarrow 1}f(x)[tex] \textsf{ exists and is equal to 1}[/tex]

[tex] \\ \\ [/tex]

[tex] \texttt{In the same graph we can see, that at } [/tex][tex] \texttt{x = 1 there exists a unique value of f(x) = 1} [/tex][tex] \texttt{so, thus the statement is correct.} [/tex]

[tex] \\ \\ \\ [/tex]

[tex] \textsf{After reviewing both the statements as} [/tex] [tex] \textsf{per the given graph, we can infer that } [/tex][tex] \textsf{the Correct choice is B. Statement 2 only } [/tex]