Respuesta :

Answer:

1)x=3

2) f(-2)=9

3)

4) d

5)x=2

6) -7b

Part 1 :-

[tex]{:\implies \quad \sf \dfrac{2x}{3}=\dfrac84}[/tex]

[tex]{:\implies \quad \sf 2x=\dfrac84 \times 3}[/tex]

[tex]{:\implies \quad \sf 2x=6}[/tex]

[tex]{:\implies \quad \sf x=\dfrac62 =\boxed{\bf{3}}}[/tex]

Part 2 :-

Given that, f(x) = x² + x + 7, for f(-2), put x = -2

[tex]{:\implies \quad \sf f(-2)=(-2)^{2}+(-2)+7}[/tex]

[tex]{:\implies \quad \sf f(-2)=4-2+7=\boxed{\bf{9}}}[/tex]

Part 3 :-

We will use • between small numbers and +, - in big numbers of the above given problem as:

[tex]{:\implies \quad \sf 4\underline{\boxed{\bf +}}\sf 5\underline{\boxed{\bf \cdot}}\sf 2\underline{\boxed{\bf -}}\sf 6=8}[/tex]

Part 4 :-

7, is a natural number, and every natural number is whole number, and every whole number is an integer, so (a),(b), and (c) are correct. Also, 7 is not an irrational number. So, option (d) is incorrect

Part 5 :-

[tex]{:\implies \quad \sf 2+3+x=1+8-2}[/tex]

[tex]{:\implies \quad \sf 5+x=7}[/tex]

[tex]{:\implies \quad \sf x=7-5=\boxed{\bf 2}}[/tex]

Part 6 :-

[tex]{:\implies \quad \sf 12b-5b+6b-20b}[/tex]

[tex]{:\implies \quad \sf 7b-14b}[/tex]

[tex]{:\implies \quad \boxed{\bf{-7b}}}[/tex]