Respuesta :
answer
m = 5/6
how ❓
When doing math problems, you want to consider...
- First step
- Understand concept
- Why your answer is your answer
To make sure we get to those 3 topics, we will do the long equation.
discuss topics
- Part 1 is simplifying
- Part 2 is grouping the left side
- Part 3 is grouping right side constants
- Part 4 is isolating m
_______________________________________________________
solve (part 1)
[tex]4\cdot \left(\frac{\mathrm{m}}{4}+\frac{2}{4}\right)=5\cdot \mathrm{m}+\frac{-4}{3}\\[/tex]
[tex]4\cdot \left(\frac{\mathrm{m}}{4}+\frac{2}{4}\right)=5\cdot \mathrm{m}+\frac{-4}{3}[/tex]
[tex]4\cdot \left(\frac{\mathrm{m}}{4}+\frac{\left(1\cdot 2\right)}{\left(2\cdot 2\right)}\right)=5\cdot \mathrm{m}+\frac{-4}{3}[/tex]
[tex]4\cdot \left(\frac{\mathrm{m}}{4}+\frac{1}{2}\right)=5\cdot \mathrm{m}+\frac{-4}{3}[/tex]
[tex]\frac{\left(\mathrm{m}\cdot 4\right)}{4}+\frac{\left(1\cdot 4\right)}{2}=5\cdot \mathrm{m}+\frac{-4}{3}[/tex]
[tex]\frac{\left(\mathrm{m}\cdot 4\right)}{4}+\frac{4}{2}=5\cdot \mathrm{m}+\frac{-4}{3}[/tex]
[tex]\mathrm{m}+\frac{4}{2}=5\cdot \mathrm{m}+\frac{-4}{3}[/tex]
[tex]\mathrm{m}+\frac{\left(2\cdot 2\right)}{\left(1\cdot 2\right)}=5\cdot \mathrm{m}+\frac{-4}{3}[/tex]
[tex]\mathrm{m}+2=5\cdot \mathrm{m}+\frac{-4}{3}[/tex]
solve (part 2)
[tex]\mathrm{m}+2=5\cdot \mathrm{m}+\frac{-4}{3}\\\mathrm{m}+2-5\cdot \mathrm{m}=5\mathrm{m}+\frac{-4}{3}-5\cdot \mathrm{m}\\\mathrm{m}-5\cdot \mathrm{m}+2=5\cdot \mathrm{m}+\frac{-4}{3}-5\cdot \mathrm{m}\\-4\cdot \mathrm{m}+2=5\cdot \mathrm{m}+\frac{-4}{3}-5\cdot \mathrm{m}\\-4\cdot \mathrm{m}+2=5\cdot \mathrm{m}-5\cdot \mathrm{m}+\frac{-4}{3}\\-4\cdot \mathrm{m}+2=\frac{-4}{3}[/tex]
solve (part 3)
[tex]-4\cdot \mathrm{m}+2=\frac{-4}{3}\\-4\mathrm{m}+2-2=\frac{-4}{3}-2\\-4\cdot \mathrm{m}=\frac{-4}{3}-2\\-4\cdot \mathrm{m}=\frac{-4}{3}+\frac{-6}{3}\\-4\cdot \mathrm{m}=\frac{-4-6}{3}\\\\-4\cdot \mathrm{m}=\frac{-10}{3}[/tex]
solve (part 4)
[tex]-4\cdot \mathrm{m}=\frac{-10}{3}\\\frac{-4\mathrm{m}}{-4}=\frac{\frac{-10}{3}}{-4}\\\frac{4\cdot \mathrm{m}}{4}=\frac{\frac{-10}{3}}{-4}\\\mathrm{m}=\frac{\frac{-10}{3}}{-4}\\\mathrm{m}=\frac{-10}{3\cdot -4}\\\\\mathrm{m}=\frac{5}{6}[/tex]