Respuesta :
[tex](8x^4y^5)^{\frac{2}{3}}\implies (2^3x^4y^5)^{\frac{2}{3}}\implies 2^{3\cdot \frac{2}{3}} x^{4\cdot \frac{2}{3}} y^{5\cdot \frac{2}{3}}\implies 2^2 x^{\frac{8}{3}} y^{\frac{10}{3}}\implies 4x^{\frac{8}{3}} y^{\frac{10}{3}}[/tex]
The simplest radical form of the expression [tex](8x^4y^5)^{\frac{2}{3} }[/tex] is [tex]\sqrt[3]{(8x^4y^5)^2}[/tex].
What is radical form of the expression?
A radical expression is an expression containing a square root.
We have,
[tex](8x^4y^5)^{\frac{2}{3} }[/tex]
To write it in simplest radical form,
We will use this formula [tex]a^{\frac{x}{n} } =\sqrt[n]{a^{x} }[/tex]
So, using this we get,
[tex](8x^4y^5)^{\frac{2}{3} }=\sqrt[3]{(8x^4y^5)^2}[/tex]
Hence, we can say that the simplest radical form of the expression [tex](8x^4y^5)^{\frac{2}{3} }[/tex] is [tex]\sqrt[3]{(8x^4y^5)^2}[/tex].
To know more about radical form click here
https://brainly.com/question/1685445
#SPJ2