Respuesta :

[tex](8x^4y^5)^{\frac{2}{3}}\implies (2^3x^4y^5)^{\frac{2}{3}}\implies 2^{3\cdot \frac{2}{3}} x^{4\cdot \frac{2}{3}} y^{5\cdot \frac{2}{3}}\implies 2^2 x^{\frac{8}{3}} y^{\frac{10}{3}}\implies 4x^{\frac{8}{3}} y^{\frac{10}{3}}[/tex]

The simplest radical form of the expression  [tex](8x^4y^5)^{\frac{2}{3} }[/tex]  is [tex]\sqrt[3]{(8x^4y^5)^2}[/tex].

What is radical form of the expression?

A radical expression is an expression containing a square root.

We have,

[tex](8x^4y^5)^{\frac{2}{3} }[/tex]  

To write it in simplest radical form,

We will use this formula [tex]a^{\frac{x}{n} } =\sqrt[n]{a^{x} }[/tex]

So, using this we get,

[tex](8x^4y^5)^{\frac{2}{3} }=\sqrt[3]{(8x^4y^5)^2}[/tex]

Hence, we can say that the simplest radical form of the expression  [tex](8x^4y^5)^{\frac{2}{3} }[/tex]  is [tex]\sqrt[3]{(8x^4y^5)^2}[/tex].

To know more about radical form click here

https://brainly.com/question/1685445

#SPJ2