Respuesta :

Answer:

[tex]\dfrac{\text{d}}{\text{d}x} \tan^{-1}x=\dfrac{1}{1+x^2}[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{6.5 cm}\underline{Trigonometric Identity}\\\\$\tan^{-1}(A)-\tan^{-1}(B) \equiv \tan^{-1}\left(\dfrac{A-B}{1+AB}\right)$\\\end{minipage}}[/tex]

[tex]\boxed{\begin{minipage}{3 cm}$\displaystyle \lim_{h \to 0} \left[\dfrac{\tan^{-1} \theta}{\theta} \right]=1$\\\end{minipage}}[/tex]

[tex]\boxed{\begin{minipage}{5.6 cm}\underline{Differentiating from First Principles}\\\\$\text{f}\:'(x)=\displaystyle \lim_{h \to 0} \left[\dfrac{\text{f}(x+h)-\text{f}(x)}{(x+h)-x}\right]$\\\end{minipage}}[/tex]

Given function:

[tex]\text{f}(x)=\tan^{-1}x[/tex]

[tex]\implies \text{f}(x+h)=\tan^{-1}(x+h)[/tex]

Differentiating from first principles:

[tex]\begin{aligned}\text{f}\:'(x) & =\displaystyle \lim_{h \to 0} \left[\dfrac{\text{f}(x+h)-\text{f}(x)}{(x+h)-x}\right]\\\\& =\lim_{h \to 0} \left[\dfrac{\tan^{-1}(x+h)-\tan^{-1}x}{(x+h)-x}\right]\end{aligned}[/tex]

Using the trigonometric identity to rewrite the numerator:

       [tex]\begin{aligned}& =\lim_{h \to 0} \left[\dfrac{\tan^{-1}\left(\dfrac{x+h-x}{1+x(x+h)}\right)}{(x+h)-x}\right]\\\\& =\lim_{h \to 0} \left[\dfrac{\tan^{-1}\left(\dfrac{h}{1+x^2+xh)}\right)}{h}\right]\end{aligned}[/tex]

[tex]\textsf{Multiply the denominator by }\dfrac{1+x^2+xh}{1+x^2+xh}:[/tex]

       [tex]= \displaystyle \lim_{h \to 0} \left[\dfrac{\tan^{-1}\left(\dfrac{h}{1+x^2+xh)}\right)}{\dfrac{h(1+x^2+xh)}{(1+x^2+xh)}}\right][/tex]

Separate:

       [tex]= \displaystyle \lim_{h \to 0} \left[\dfrac{\tan^{-1}\left(\dfrac{h}{1+x^2+xh)}\right)}{\dfrac{h}{(1+x^2+xh)}} \right] \cdot \displaystyle \lim_{h \to 0} \left[\dfrac{1}{1+x^2+xh}\right][/tex]

[tex]\textsf{Use }\displaystyle \lim_{h \to 0} \left[\dfrac{\tan^{-1} \theta}{\theta} \right]=1:[/tex]

       [tex]= 1 \cdot \displaystyle \lim_{h \to 0} \left[\dfrac{1}{1+x^2+xh}\right][/tex]

As h gets close to zero:

       [tex]= 1 \cdot \left[\dfrac{1}{1+x^2}\right][/tex]

Simplify:

       [tex]=\dfrac{1}{1+x^2}[/tex]