Respuesta :

  • sinØ=Perpendicular/Hypotenuse
  • sin65=AB/AC
  • sin65=12/AC
  • AC=12/sin65
  • AC=13.2ft

Answer:

14.50 feet (approx) is the distance,that the box has to travel to move from point A to point C.

Step-by-step explanation:

Distance = ?

Here in the given right triangle we will use sin's formulae,

[tex] \rm \: sin \theta = \cfrac{adjacent}{hypotenuse} [/tex]

  • Sin ∅ = sin*65°
  • Adjacent = 12 ft
  • Let Hypotenuse be x.

Then,

  • [tex] \sin \: 65 = \cfrac{12}{x} [/tex]

Solving for x,

  • [tex]x \times \sin65 = 12[/tex]
  • [tex]x = \cfrac{12}{sin65} [/tex]

  • [tex]x = \cfrac{12}{0.826829} [/tex]

  • [tex] \boxed{ \rm \: Hypotenuse = 14.5132 \approx14.50 \: \rm feet}[/tex]

We can conclude that:

14.50 feet (approx) is the distance,that the box has to travel to move from point A to point C.