Respuesta :

Answer:

[tex]\large\begin{cases}a_1=5 \\a_n=a_{(n-1)}-4\end{cases}[/tex]

Step-by-step explanation:

Recursive formula allows us to find the value of a specific term based on the previous term.

Explicit formula allows us to find the value of a specific term based on its position.

Given explicit formula:  [tex]a(n)=5+(n-1)(-4)[/tex]

[tex]\implies a(1)=5+(1-1)(-4)=5[/tex]

[tex]\implies a(2)=5+(2-1)(-4)=1[/tex]

[tex]\implies a(3)=5+(3-1)(-4)=-3[/tex]

[tex]\implies a(4)=5+(4-1)(-4)=-7[/tex]

From inspection of the sequence, we can see that to get the next term, we need to subtract 4 from the previous term.

[tex]5 \underset{-4}{\longrightarrow} 1 \underset{-4}{\longrightarrow} -3 \underset{-4}{\longrightarrow} -7[/tex]

Therefore, the recursive formula is:

[tex]a_n=a_{(n-1)}-4[/tex]

For a recursive formula, we also need to give the value for [tex]a_1[/tex] .

Therefore, the final recursive formula for the explicit formula is:

[tex]\large\begin{cases}a_1=5 \\a_n=a_{(n-1)}-4\end{cases}[/tex]