Respuesta :

The equation of the quadratic function is y = -1/4(x + 2)² + 4

How to determine the quadratic equation?

A quadratic equation is represented as:

y = ax² +bx + c

When x = 0 and y = 3, we have:

3 = a(0)² +b(0) + c

This gives

c = 3

So, we have:

y = ax² +bx + 3

When x = 1 and y = 1.75, we have:

1.75 = a(1)² +b(1) + 3

This gives

a + b = -1.25

Make b the subject

b = -1.25 - a

When x = -2 and y = 4, we have:

4 = a(-2)² +b(-2) + 3

This gives

4a - 2b = 1

Substitute b = -1.25 - a in 4a - 2b = 1

4a - 2(-1.25 - a) = 1

Expand

4a + 2.5 + 2a = 1

Evaluate the like terms

6a = -1.5

Divide both sides by 6

a = -1/4

Substitute a = -1/4 in b = -1.25 - a

b = -1.25 + 1/4

Evaluate

b = -1

So, we have:

y = -1/4x² - x + 3

Factor out -1/4

y = -1/4(x² + 4x) + 3

-------------------------------------------------

Take the coefficient of x

k = 4

Divide by 2

k/2 = 2

Square both sides

(k/2)² = 4

-------------------------------------------------

Add and subtract 4 inside the bracket of y = -1/4(x² + 4x) + 3

y = -1/4(x² + 4x + 4 - 4) + 3

Expand

y = -1/4(x² + 4x + 4) + 1 + 3

Evaluate the sum

y = -1/4(x² + 4x + 4) + 4

Express the bracket as a perfect square

y = -1/4(x + 2)² + 4

Hence, the equation of the quadratic function is y = -1/4(x + 2)² + 4

Read more about quadratic functions at:

https://brainly.com/question/8649555

#SPJ1