Respuesta :

Answer:

D) 0.69

Step-by-step explanation:

Given :

5 × 2³ˣ = 21

Divide by 5 on each side :

  • 1/5 x 5 x 2³ˣ = 1/5 x 21
  • 2³ˣ = 4.2

Taking the cubic root :

  • ∛2³ˣ = ∛4.2
  • 2ˣ = 1.61

Using logarithm values :

  • log(2ˣ) = log(1.61)
  • x log(2) = log(1.61)
  • x = log (1.61) / log (2)
  • x = log₂ (1.61)
  • x = 0.69 (approximately)

Answer:

D.  0.69

Step-by-step explanation:

Given equation:

[tex]5 \cdot 2^{3x}=21[/tex]

Divide both sides by 5:

[tex]\implies \dfrac{5 \cdot 2^{3x}}{5}=\dfrac{21}{5}[/tex]

[tex]\implies2^{3x}=4.2[/tex]

[tex]\textsf{Apply exponent rule} \quad a^{bc}=(a^b)^c:[/tex]

[tex]\implies(2^3)^x=4.2[/tex]

[tex]\implies8^x=4.2[/tex]

Take natural logs of both sides:

[tex]\implies \ln 8^x=\ln 4.2[/tex]

[tex]\textsf{Apply the log Power law} \quad \ln x^n=n\ln x :[/tex]

[tex]\implies x \ln 8=\ln 4.2[/tex]

Divide both sides by ln 8:

[tex]\implies \dfrac{x \ln 8}{\ln 8}=\dfrac{\ln 4.2}{\ln 8}[/tex]

[tex]\implies x=\dfrac{\ln 4.2}{\ln 8}[/tex]

[tex]\implies x=0.690129776...[/tex]

[tex]\implies x=0.69 \: \sf (2\:dp)[/tex]