Respuesta :

[tex]\huge{\color{magenta}{\fbox{\textsf{\textbf{Answer}}}}}[/tex]

x = -1

Step-by-step explanation:

[tex] \sf\frac{x}{x - 2} + \frac{x - 1}{x + 1} = - 1[/tex]

Taking LCM

[tex] \sf \hookrightarrow \frac{x(x + 1) + (x - 1)(x - 2)}{(x - 2)(x + 1)} = - 1 \\ \\ \sf \hookrightarrow \frac{ {x}^{2} + x + {x}^{2} - 3x + 2 }{ {x}^{2} - x - 2} = - 1 \\ \\ \sf \hookrightarrow \frac{2 {x}^{2} - 2x + 2 }{ {x}^{2} - x - 2 } = - 1[/tex]

Cross multiplying

[tex] \sf \hookrightarrow 2 {x}^{2} - 2x + 2 = - 1( {x}^{2} - x -2) \\ \\ \sf \hookrightarrow 2 {x}^{2} - 2x + \cancel2 = - {x}^{2} + x + \cancel2 \\ \\ \sf \hookrightarrow 3 {x}^{2} - 3x = 0[/tex]

Taking 3 common

[tex] \sf \hookrightarrow {x}^{2} - x = 0 \\ \\ \sf \hookrightarrow x(x - 1) = 0 \\ \\ \sf \hookrightarrow x - 1 = 0 \\ \\ \\ \green{\boxed{ \hookrightarrow x = 1}}[/tex]

  • Verifying

Taking x as 1

[tex] \sf \implies\frac{x}{x - 2} + \frac{x - 1}{x + 1} = - 1 \\ \\ \sf \implies \frac{1}{1 - 2} + \frac{1 - 1}{1 + 1} = - 1 \\ \\ \sf \implies - 1 + 0 = - 1 \\ \\ \sf \implies - 1 = - 1[/tex]