Respuesta :
We need a maximum enlargement of n = 18 terms in order to guarantee this level of accuracy for Simpon's Rule.
What is the estimation of the accuracy of Simpon's Rule?
The estimation of Simpson's rule follows an approach where the value of the definite integral [tex]\int\limits^a_b f{x} \, dx[/tex] is approximated by using a parabolic method of approximation for each subinterval of the interval [a, b].
The formula for calculating Simpon's rule can be expressed as:
[tex]\mathbf{\int ^b_a f(x) d \simeq \dfrac{\Delta x}{3}[y_o+4y_1+2y_2+4y_3+2y_4+...+4{y_{n-1} +y_n}}[/tex]
Given that:
[tex]\mathbf{\int ^1_0 7ex^2 dx }[/tex],
- where a = 0, b = 1, [tex]\mathbf{f(x) = 7 e^{x^2}}[/tex]
We need to determine the fourth derivative; i.e.
[tex]\mathbf{f'(x) = 14xe^{x^2}}[/tex]
[tex]\mathbf{f''(x) = 14ex^2 +28x^2e^{x^2} = (14+28x^2)e^{x^2}}[/tex]
[tex]\mathbf{f'''(x) = 56xe^{x^2} +2(14+28x^2)e^{x^2} = (84x+48x^3)e^{x^2}}[/tex]
[tex]\mathbf{f^{iv}(x) = (84+144x^2)e^{x^2} +2x(84x+48x^3)e^{x^2} = (84x+312x^2+96x^4)e^{x^2}}[/tex]
The maximum value of the 4th derivative on the interval [0,1] is:
[tex]\mathbf{f^{iv}(1) = 624e}[/tex] and the error is bounded by:
[tex]\mathbf{\Bigg| \dfrac{f^{iv}(1) (1-0)^5}{180n^4} \Bigg| = \dfrac{624e}{180n^4}=\dfrac{52e}{15n^4}}[/tex]
Now for the error to be less than 0.0001; we have:
[tex]\mathbf{\dfrac{52e}{15n^4} < 0.0001}[/tex]
[tex]\mathbf{52e < 0.0015n^4}[/tex]
[tex]\mathbf{n^4 > \dfrac{52e}{0.0015}}[/tex]
[tex]\mathbf{n > \sqrt[4]{ \dfrac{52e}{0.0015}}}[/tex]
n ≅ 17.52.
Therefore, we can conclude that we need a maximum of n = 18 terms in order to guarantee this level of accuracy for Simpon's Rule.
Learn more about Simpson's Rule here:
https://brainly.com/question/13107531
#SPJ4