Respuesta :
Required answer :
We know that,
Charle's Law :
- [tex] \red{\boxed{ \sf \frac{V_{1}}{T_{1}} \: = \: \frac{V_{2}}{T_{2}} }} \: \pink \bigstar[/tex]
We have :
- V_1 = 78.5 ml
- T_1 = 318.15 K
- T_2 = 273.15 K
- V_2 = ?
(V is volume and T is temperature)
Substituting the values :
[tex] \implies \: \sf \dfrac{78.5}{318.15} \: = \: \dfrac{ V_2}{273.15} \\ \\ \implies \: \sf 78.5 \times273.15 \: = \: V_2 \times 318.15 \\ \\ \implies \: \sf { 21442.275 \: = \: V_2 \times 318.15} \\ \\\implies \: \sf {V_2 = \dfrac{ 21442.275 }{318.15}} \\ \\ \implies \: \bf {V_2 = 67.3 \: (approx) }[/tex]