Answer:
7.85 cm (2 d.p.)
Step-by-step explanation:
Step 1: Find the radius
[tex]\textsf{Area of a circle}=\pi r^2 \quad \textsf{(where r is the radius)}[/tex]
Given:
Substitute the given value into the formula and solve for r:
[tex]\implies 225 \pi= \pi r^2[/tex]
[tex]\implies r^2=225[/tex]
[tex]\implies r=\sqrt{225}[/tex]
[tex]\implies r=15 \:\: \sf cm[/tex]
Step 2: Find the arc length
[tex]\textsf{Arc length}=2 \pi r\left(\dfrac{\theta}{360^{\circ}}\right) \quad \textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle in degrees)}[/tex]
Given:
Substitute the given values into the formula and solve for arc length:
[tex]\implies \textsf{Arc length}=2 \pi (15) \left(\dfrac{30^{\circ}}{360^{\circ}}\right)[/tex]
[tex]\implies \textsf{Arc length}=\dfrac{5}{2}\pi \:\: \sf cm[/tex]
[tex]\implies \textsf{Arc length}=7.85 \:\: \sf cm\:\:(2\:d.p.)[/tex]