Respuesta :

#a

  • (1+cosx)(1-cosx)
  • 1²-cos²x
  • 1-cos²x
  • sin²x

#2

  • 1/cot²x-1/cos²x
  • tan²x-sec²x
  • -1

#c

  • sec²(90-x)[sin²x-sin⁴x]
  • csc²x[sin²x-sin⁴x]
  • 1-sin²x
  • cos²x

Answer:

Trigonometric Identities used:

[tex]\sin^2 \theta + \cos^2 \theta \equiv 1[/tex]

[tex]\sec \theta \equiv \dfrac{1}{\cos \theta}[/tex]

[tex]\cot \theta \equiv \dfrac{1}{\tan \theta}[/tex]

[tex]\sec^2 \theta \equiv 1 + \tan^2 \theta[/tex]

[tex]\sin(\theta)=\cos \left(\dfrac{\pi}{2}-\theta\right)[/tex]

Part (a)

   [tex](1+ \cos(x))(1-\cos(x))[/tex]

[tex]=1-\cos(x)+\cos(x)-\cos^2(x)[/tex]

[tex]=1-\cos^2(x)[/tex]

[tex]= \sin^2(x)[/tex]

Part (b)

   [tex]\dfrac{1}{\cot^2(x)}-\dfrac{1}{\cos^2(x)}[/tex]

[tex]=\tan^2(x)-\sec^2(x)[/tex]

[tex]=\tan^2(x)-(1 + \tan^2(x))[/tex]

[tex]=\tan^2(x)-1 - \tan^2(x)[/tex]

[tex]=-1[/tex]

Part (c)

   [tex]\sec^2\left(\dfrac{ \pi }{2}-x\right) \left[\sin^2(x)-\sin^4(x) \right][/tex]

[tex]=\dfrac{1}{\cos^2\left(\dfrac{ \pi }{2}-x\right)} \left[\sin^2(x)-\sin^4(x) \right][/tex]

[tex]=\dfrac{1}{\sin^2(x)} \left[\sin^2(x)-\sin^4(x) \right][/tex]

[tex]= \dfrac{\sin^2(x)-\sin^4(x)}{\sin^2(x)}[/tex]

[tex]= \dfrac{\sin^2(x)}{\sin^2(x)} - \dfrac{\sin^4(x)}{\sin^2(x)}[/tex]

[tex]= \dfrac{\sin^2(x)}{\sin^2(x)} - \dfrac{(\sin^2(x))(\sin^2(x))}{\sin^2(x)}[/tex]

[tex]=1- \sin^2(x)[/tex]

[tex]= \cos^2(x)[/tex]