Respuesta :

-------------------------------------------------------------------------------------------------------------

Answer:  [tex]\textsf{x}^2\textsf{ - 14x + 24}[/tex]

-------------------------------------------------------------------------------------------------------------

Given:  [tex]\textsf{x = 12 and x = 2}[/tex]

Find: [tex]\textsf{Determine the quadratic equation}[/tex]

Solution:  In order to determine the quadratic equation we need to move the integers onto the side where x is and then distribute.

Move the integers

  • Solution #1
  • [tex]\textsf{x - 12 = 12 - 12}[/tex]
  • [tex]\textsf{x - 12 = 0}[/tex]

  • Solution #2
  • [tex]\textsf{x - 2 = 2 - 2}[/tex]
  • [tex]\textsf{x - 2 = 0}[/tex]

Create and expression and distribute

  • [tex]\textsf{(x - 12)(x - 2) = 0}[/tex]
  • [tex]\textsf{(x * x) + (x * -2) + (-12 * x) + (-12 * -2) = 0}[/tex]
  • [tex]\textsf{x}^2\textsf{ - 2x - 12x + 24 = 0}[/tex]
  • [tex]\textsf{x}^2\textsf{ - 14x + 24 = 0}[/tex]

Therefore, after completing the steps we were able to determine that the quadratic equation that will have solutions of x = 12 and x = 2 is x^2 - 14x + 24.