Answer:
HJ = 10
JK = 12
Step-by-step explanation:
Given:
- HJ = 2x + 4
- JK = 3x + 3
- HK = 22
If J is between H and K, then:
[tex]\sf HJ + JK = \boxed{\sf HK}[/tex]
[tex](\: \boxed{2x+4}\:)+(\:\boxed{3x+3}\:)=\boxed{22}[/tex]
Find x
Once we combine our like terms we get:
[tex]\boxed{5}\:x+\boxed{7}=\boxed{22}[/tex]
Subtract 7 from both sides:
⇒ 5x = 15
Divide both sides by 5:
[tex]x=\boxed{5}[/tex]
To find HJ and JK, plug in the found value of x:
[tex]\textsf{HJ}=2x+4[/tex]
[tex]\textsf{HJ}=2(\:\boxed{3}\:)+4[/tex]
[tex]\textsf{HJ}=\boxed{6}+4[/tex]
[tex]\textsf{HJ}=\boxed{10}[/tex]
[tex]\textsf{JK}=3x+3[/tex]
[tex]\textsf{JK}=3(\:\boxed{3}\:)+3[/tex]
[tex]\textsf{JK}=\boxed{9}+3[/tex]
[tex]\textsf{JK}=\boxed{12}[/tex]