Respuesta :

The quotient [tex]\frac{x^2 - 49}{x + 2} \div \frac{x^2 - 14 +49}{3x + 6}[/tex] is [tex]\frac{3(x +7)}{(x -7)}[/tex]

How to determine the quotient?

The expression is given as:

[tex]\frac{x^2 - 49}{x + 2} \div \frac{x^2 - 14 +49}{3x + 6}[/tex]

Express x^2 - 49 as difference of two squares

[tex]\frac{(x + 7)(x- 7)}{x + 2} \div \frac{x^2 - 14 +49}{3x + 6}[/tex]

Factorize other expressions

[tex]\frac{(x + 7)(x- 7)}{x + 2} \div \frac{(x -7)(x-7)}{3(x + 2)}[/tex]

Express as product

[tex]\frac{(x + 7)(x- 7)}{x + 2} \times\frac{3(x + 2)}{(x -7)(x-7)}[/tex]

Cancel the common factors

[tex]\frac{(x + 7)}{1} \times\frac{3}{(x -7)}[/tex]

Evaluate the product

[tex]\frac{3(x +7)}{(x -7)}[/tex]

Hence, the quotient [tex]\frac{x^2 - 49}{x + 2} \div \frac{x^2 - 14 +49}{3x + 6}[/tex] is [tex]\frac{3(x +7)}{(x -7)}[/tex]

Read more about quotient at:

https://brainly.com/question/8952483

#SPJ1