[tex]\displaystyle\\|\Omega|=\binom{15}{3}=\dfrac{15!}{3!12!}=\dfrac{13\cdot14\cdot15}{2\cdot3}=455[/tex]
a)
[tex]\displaystyle\\|A|=\binom{10}{3}=\dfrac{10!}{3!7!}=\dfrac{8\cdot9\cdot10}{2\cdot3}=120\\\\P(A)=\dfrac{120}{455}=\dfrac{24}{91}\approx26.4\%[/tex]
b)
[tex]\displaystyle\\|A|=\binom{5}{3}=\dfrac{5!}{3!2!}=\dfrac{4\cdot5}{2}=10\\\\P(A)=\dfrac{10}{455}=\dfrac{2}{91}\approx2.2\%[/tex]
c)
[tex]\displaystyle\\|A|=\binom{10}{2}\cdot5=\dfrac{10!}{2!8!}\cdot5=\dfrac{9\cdot10}{2}\cdot5=225\\\\P(A)=\dfrac{225}{455}=\dfrac{45}{91}\approx49.5\%[/tex]
d)
[tex]A[/tex] - at least one is spoilt
[tex]A'[/tex] - none is spoilt
[tex]P(A)=1-P(A')[/tex]
We calculated [tex]P(A')[/tex] in a).
Therefore
[tex]P(A)=1-\dfrac{24}{91}=\dfrac{67}{91}\approx73.6\%[/tex]