Respuesta :

Answer:

[tex]\sf A) \ \ h(x) = \dfrac{1}{2} x - \dfrac{1}{2}[/tex]

Explanation:

f(x) = 2x + 1

 y  = 2x + 1

[ Make x the subject ]

 2x + 1 = y

 2x = y - 1

 x = (y - 1)/2

 x = y/2 - 1/2

Inverse function:

h(x) = x/2 - 1/2


Answer: The Inverse of the Function f(x) = 2x + 1 is f-1(x) = x/2 - 1/2

Let us solve it step by step.
Explanation:
f(x) = 2x + 1
Replace f(x) with y.
y = 2x + 1
Interchange x and y
x = 2y + 1
Solve for y
y = (x - 1) / 2
Replace y with f-1(x).
f-1(x) = x/2 - 1/2
Thus, the Inverse of the function f(x) = 2x + 1 is f-1(x) = x/2 - 1/2.