Respuesta :

Answer:

- 0.28

Step-by-step explanation:

cos 2β = cos²β - sin²β

~~~~~~~

sin β = [tex]\frac{4}{5}[/tex] ⇒ sin² β = [tex]\frac{16}{25}[/tex]

cos β = [tex]\frac{3}{5}[/tex] ⇒ cos² β = [tex]\frac{9}{25}[/tex]

cos 2β = [tex]\frac{9}{25}[/tex] - [tex]\frac{16}{25}[/tex] = - [tex]\frac{7}{25}[/tex] = - 0.28

Answer:

[tex]-\dfrac{7}{25}[/tex]

Step-by-step explanation:

Trigonometric Identities

[tex]\cos(A \pm B)=\cos A \cos B \mp \sin A \sin B[/tex]

Trigonometric ratios

[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

Using the trig ratio formulas for cosine and sine:

  • [tex]\cos(\angle ABC)=\dfrac{3}{5}[/tex]
  • [tex]\sin(\angle ABC)=\dfrac{4}{5}[/tex]

Therefore, using the trig identities and ratios:

[tex]\begin{aligned}\implies \cos(2 \cdot \angle ABC) & = \cos(\angle ABC + \angle ABC)\\\\& = \cos (\angle ABC) \cos (\angle ABC) - \sin(\angle ABC) \sin (\angle ABC)\\\\& = \cos^2(\angle ABC)-\sin^2(\angle ABC)\\\\& = \left(\dfrac{3}{5}\right)^2-\left(\dfrac{4}{5}\right)^2\\\\& = \dfrac{3^2}{5^2}-\dfrac{4^2}{5^2}\\\\& = \dfrac{9}{25}-\dfrac{16}{25}\\\\& = \dfrac{9-16}{25}\\\\& = -\dfrac{7}{25} \end{aligned}[/tex]