(1 point)Let S be the part of the plane 2x+2y+z= 1 which lies in the first octant, oriented upward. Find the flux of the vector field
F = 2i+2j + 2k across the surface S.

1 pointLet S be the part of the plane 2x2yz 1 which lies in the first octant oriented upward Find the flux of the vector field F 2i2j 2k across the surface S class=

Respuesta :

The flux is 9.

What is Flux?

Flux is the presence of a force field in a specified physical medium, or the flow of energy through a surface.

Given:

2x+2y+z= 1

F = 2i+2j + 2k

Now,

r = xi + yj + z( 1-2x-2y) K

dr/dx= i - 2k

dr/dy = j-2k

dr/dx* dr/dy

= ( i - 2k) * (j-2k)

= 2i + 2j + k

F(x)= 2i+2j + 2k

F(x). da = 4 +4 +2 = 10 dxdy

Hence, flux

= [tex]\int\limits^1_0 {\int\limits^{1-2y}_0 {10 } \, dx dy } \,[/tex]

=  [tex]\int\limits^1_0[/tex]  10(1-2y) dx

= [tex]\int\limits^1_0[/tex] 10-2y

= 10(1) - (1)²

=9

Learn more about flux here:

https://brainly.com/question/14527109

#SPJ1

The plane has intercepts (1/2, 0, 0), (0, 1/2, 0), and (0, 0, 1). Parameterize [tex]S[/tex] by the vector function

[tex]\vec s(u,v) = \dfrac{(1-u)(1-v)}2 \, \vec\imath + \dfrac{u(1-v)}2 \, \vec\jmath + v \,\vec k[/tex]

with [tex]0\le u\le1[/tex] and [tex]0\le v\le1[/tex]. (More explicitly, we have the parameterization

[tex]\vec s(u,v) = (1-v)((1-u) p_1 + u p_2) + v p_3[/tex]

where [tex]p_i[/tex] denote the given points.)

The normal vector to [tex]S[/tex] is

[tex]\vec n = \dfrac{\partial\vec s}{\partial u} \times \dfrac{\partial\vec s}{\partial v} = \dfrac{1-v}2\,\vec\imath + \dfrac{1-v}2\,\vec\jmath + \dfrac{1-v}4\,\vec k[/tex]

Then the flux of [tex]\vec F = 2\,\vec\imath+2\,\vec\jmath+2\,\vec k[/tex] across [tex]S[/tex] is given by the surface integral,

[tex]\displaystyle \iint_S \vec F \cdot d\vec\sigma = \iint_S \vec F \cdot \vec n \, dA[/tex]

[tex]\displaystyle = \int_0^1 \int_0^1 \left(2\,\vec\imath+2\,\vec\jmath+2\,\vec k) \cdot \left(\frac{1-v}2\,\vec\imath + \frac{1-v}2\,\vec\jmath + \frac{1-v}4\,\vec k\right) \, du \, dv[/tex]

[tex]\displaystyle = \frac52 \int_0^1 \int_0^1 (1-v) \, du \, dv[/tex]

[tex]\displaystyle  = \frac52 \int_0^1 (1-v) \, dv = \boxed{\frac54}[/tex]