Answer:
Base = 24 cm or 10cm
Step-by-step explanation:
REMEMBER:
An isosceles triangle ABC with base BC = ‘b' & height AD = ‘h' & its equal sides =13 cm & area = 60 cm²
Using the formulas
[tex]A=\frac{bh_b}{2}[/tex]
[tex]h_b=\sqrt{a^2-\frac{b^2}{4} }[/tex]
There are 2 solutions for [tex]b[/tex]
[tex]b=2\sqrt{2} \frac{A}{\sqrt{a^2+\sqrt{a^4-4A^2} } } =2*\sqrt{2} *\frac{60}{\sqrt{13^2+\sqrt{13^4-4*60^2} } }[/tex] ≈ [tex]10cm[/tex][tex]b=2\sqrt{2} \frac{A}{\sqrt{a^2+\sqrt{a^4-4A^2} } } =2*\sqrt{2} *\frac{60}{\sqrt{13^2-\sqrt{13^4-4*60^2} } }=24cm[/tex]
Less complex:
Area of a triangle = 1/2 * b * h = 60
=> h = 120/b
In right triangle ABD
13² = h² + b² /4 ( by Pythagoras law)
=>169 = 120²/b² + b²/4
=>676 b² = 57600 + b^4
=> b^4 - 676 b² + 57600 = 0
=> b² = 676 +- √(676² - 4*57600) / 2
=> b²= 676 +- √(226576) /2
=> b² = (676 +- 476 )/2
=> b² = 1152/2 , 200 /2
=> b² = 576 , 100
=> b = 24, 10
So, Base = 24 cm or 10cm