NO LINKS!! Please help me with this problem

Answer:
23.1 years (nearest tenth)
Step-by-step explanation:
Compound Interest Formula
[tex]\large \text{$ \sf A=P\left(1+\frac{r}{n}\right)^{nt} $}[/tex]
where:
Given:
Substitute the given values into the formula and solve for t:
[tex]\implies \sf 1200=600\left(1+\dfrac{0.03}{12}\right)^{12t}[/tex]
[tex]\implies \sf 1200=600\left(1.0025\right)^{12t}[/tex]
[tex]\implies \sf \dfrac{1200}{600}=\left(1.0025\right)^{12t}[/tex]
[tex]\implies \sf 2=\left(1.0025\right)^{12t}[/tex]
Take natural logs:
[tex]\implies \sf \ln 2=\ln \left(1.0025\right)^{12t}[/tex]
[tex]\implies \sf \ln 2=12t\ln \left(1.0025\right)[/tex]
[tex]\implies t=\dfrac{ \ln 2}{12 \ln (1.0025)}[/tex]
[tex]\implies t=23.13377513...[/tex]
[tex]\implies t=23.1\: \sf years \:\:(nearest\:tenth)[/tex]
The money will double in value in approximately [tex]\boxed{\sf 23.1}[/tex] years.
Used formula
[tex]\boxed{\sf A=P(1+\dfrac{r}{n})^{nt}}[/tex]
[tex]\\ \implies \sf 1200=600\left(1.0025\right)^{12t}[/tex]
[tex]\\ \implies \sf \dfrac{1200}{600}=\left(1.0025\right)^{12t}[/tex]
[tex]\\ \implies \sf 2=\left(1.0025\right)^{12t}[/tex]
[tex]\implies \sf \ln 2=\ln \left(1.0025\right)^{12t}[/tex]
[tex]\\ \implies \sf \ln 2=12t\ln \left(1.0025\right)[/tex]
[tex]\\ \implies t=\dfrac{ \ln 2}{12 \ln (1.0025)}[/tex]
[tex]\\ \implies t=23.1years[/tex]