Respuesta :

Answer:

32.59 (nearest hundredth)

Step-by-step explanation:

Geometric sequence

General form of a geometric sequence: [tex]a_n=ar^{n-1}[/tex]

(where a is the first term and r is the common ratio)

Given:

[tex]\displaystyle \sum^{20}_{n=1} 4 \left(\dfrac{8}{9}\right)^{n-1}[/tex]

Therefore:

  • a = 4
  • r = 8/9

Sum of the first n terms of a geometric series:

[tex]S_n=\dfrac{a(1-r^n)}{1-r}[/tex]

To find the sum of the first 20 terms, substitute the found values of a and r, together with n = 20, into the formula:

[tex]\implies S_{20}=\dfrac{4\left(1-\left(\frac{8}{9}\right)^{20}\right)}{1-\left(\frac{8}{9}\right)}[/tex]

[tex]\implies S_{20}=32.58609013...[/tex]

[tex]\implies S_{20}=32.59\:\: \sf (nearest\:hundredth)[/tex]                    

General form of geometric progression

  • ar^n-1

On comparing to the summation

  • a=4
  • r=8/9

Apply Sum formula

[tex]\boxed{\sf S_n=\dfrac{a(1-r^n)}{1-r}}[/tex]

[tex]\\ \implies \sf S_{20}=\dfrac{4\left(1-\left(\frac{8}{9}\right)^{20}\right)}{1-\left(\frac{8}{9}\right)}[/tex]

[tex]\\ \implies\sf S_{20}=32.586[/tex]

[tex]\\ \sf\mplies S_{20}=32.59[/tex]