Respuesta :
Answer:
w = -1/5
OR
w = -3
Step-by-step explanation:
Given equation:
−16w-3 = 5w²
Solution:
Subtracting 5w^2 from both sides,we get
- -16w-3-5w² = 5w² - 5w²
- -5w²-16w-3=0
Factor the LHS of this equation using middle term factor:
- (-5w²-1)(w-3)
Now,
- [tex]( - 5w - 1) = 0 \: \: \: \: \: \: \: \: ...(1)[/tex]
- [tex](w - 3) = 0 \: \: \: \: \: \: \: \: \: \: ... (2)[/tex]
Solving for equation 1:
- [tex] - 5w = 0 + 1[/tex]
- [tex] - 5w = 1[/tex]
- [tex] \boxed{w = - \cfrac{1}{5} }[/tex]
Solving for equation 2:
- [tex]w - 3 = 0[/tex]
- [tex]w = 0 - 3[/tex]
- [tex] \boxed{w = - 3}[/tex]
[tex] - 16w - 3 = 5 {w}^{2} \\ \\ 0 = 5 {w}^{2} + 16w + 3 \\ \\ 5 {w}^{2} + 16w + 3 = 0 \\ \\ 5 {w}^{2} + w + 15w + 3 = 0 \\ \\ (5 {w}^{2} + w) + (15w + 3) = 0 \\ \\ w(5w + 1) + 3(5w + 1) = 0 \\ \\ (w + 3)(5w + 1) = 0. [/tex]
The value of w is -3 and -1/5 .