Respuesta :

Answer:

The answer is 0.45 pounds for an apple and 0.3 pounds for a pear

Step-by-step explanation:

Answer:

Cost of each apple: [tex]0.45[/tex].

Cost of each pear: [tex]0.30[/tex].

Step-by-step explanation:

Let [tex]x[/tex] denote the cost of each apple. Let [tex]y[/tex] denote the cost of each pear.

The question states that the cost of [tex]4[/tex] apples and [tex]3[/tex] pears is [tex]2.70[/tex]. Thus:

[tex]4\, x + 3\, y = 2.70[/tex].

Likewise, since the cost of [tex]2[/tex] apples and [tex]5[/tex] pears is [tex]2.40[/tex]:

[tex]2\, x + 5\, y = 2.40[/tex].

Solve this system of equations for [tex]x[/tex] and [tex]y[/tex] to find the price of each fruit.

[tex]\left\lbrace \begin{aligned} & 4\, x + 3\, y = 2.70 \\ & 2\, x + 5\, y = 2.40\end{aligned}\right.[/tex].

Multiply both sides of the equation [tex]2\, x + 5\, y = 2.40[/tex] by [tex]2[/tex] to match the coefficient of [tex]x[/tex] in the first equation:

[tex]\left\lbrace \begin{aligned} & 4\, x + 3\, y = 2.70 \\ & (2\times 2)\, x + (2 \times 5)\, y = (2 \times 2.40)\end{aligned}\right.[/tex].

[tex]\left\lbrace \begin{aligned} & 4\, x + 3\, y = 2.70 \\ & 4\, x + 10\, y = 4.80 \end{aligned}\right.[/tex].

Substitute the first equation from the new equation to eliminate [tex]x[/tex] and solve for [tex]y[/tex]:

[tex]\begin{aligned}& 4\, x + 10\, y - (4\, x +3\, y) = 4.80 - 2.70\end{aligned}[/tex].

[tex]10\, y - 3\, y = 2.10[/tex].

[tex]7\, y = 2.10[/tex].

[tex]y = 0.30[/tex].

Substitute [tex]y = 0.30[/tex] into an equation from the original system to eliminate [tex]y[/tex] and solve for [tex]x[/tex].

[tex]2\, x + 5\, y = 2.40[/tex].

[tex]2\, x + 5 \times 0.30 = 2.40[/tex].

[tex]2\, x = 0.90[/tex].

[tex]x = 0.45[/tex].

Thus, [tex]x = 0.45[/tex] and [tex]y = 0.30[/tex].

In other words, the price of each apple would be [tex]0.45[/tex]. The price of each pear would be [tex]0.30[/tex].